skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kylander‐Clark, Andrew R C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evidence of metamorphism at ultrahigh‐pressure (UHP) conditions is documented by the presence of coesite, diamond and/or majoritic garnet. However, the growth of UHP‐stable phases such as majoritic garnet is often volumetrically low, and overprinting during exhumation can obscure evidence of UHP growth, making it difficult to positively identify UHP rocks. In this study, we selected garnet‐kyanite schists from three microdiamond‐bearing localities within the Rhodope Metamorphic Complex, located in eastern Greece. Samples from Xanthi, Sidironero, and Kimi have similar bulk rock compositions, but the pressure–temperature (P–T) paths differ. Because the major phases record vanishingly little evidence of metamorphism at UHP conditions, we analyzed zircon grains with complex textures to evaluate if zircon preserves a record of UHP metamorphism. Zircon grains from all localities have cores and rims separated by a characteristic interface domain, as revealed by cathodoluminescence (CL) imaging. The detrital igneous cores range in age from c. 2.5 Ga to 220 Ma and exhibit a negative Eu* anomaly, a Yb/Gd of 10–100, and variable Th/U (0–1.2). Rims yield dates of 150–125 Ma with Yb/Gd of 0.1–10 and Th/U of 0–0.2. Interface domains yield dates 165–145 Ma with Yb/Gd ranging between 0–1000 and Th/U < 0.2. We interpret the distinctive CL textures and Yb/Gd of the interface domains as evidence of zircon that reacted at UHP. The interface domain in zircon from all petrographic contexts yields variable Yb/Gd ratios that are significantly higher than both cores and rims. We therefore interpret that zircon recrystallized via interface‐coupled dissolution–reprecipitation reaction; this process preferentially partitioned heavy rare earth elements within the interface domain, which explains the higher Yb/Gd ratios. The rim domains equilibrated with the matrix, producing a relatively homogeneous and low Yb/Gd ratio in these domains. The spatial extent and degree of preservation of interface domains are interpreted as a function of the P–T path and minor variations in bulk composition. Interface domains are best preserved in rocks from Xanthi and Sidironero; in these samples, thin, homogeneous, garnet‐stable rims only partially overprint and crosscut the interface domain. In contrast, rocks from Kimi followed a higher‐temperature trajectory and the zircon grains grew large rim domains that overprinted much of the interface domain and the detrital core. Zircon grains from plagioclase‐rich versus quartz‐rich domains within samples from Sidironero show differences in texture, which indicates that local bulk composition can affect what evidence of UHP metamorphism is preserved. Collectively, these samples provide a new, durable marker of metamorphism in UHP rocks and yield new insight about which factors affect the preservation of UHP textures. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  2. Abstract Ophiolite metamorphic soles preserve important records of ophiolite emplacement, but there have been few detailed investigations into their non‐mafic portions. We present new thermobarometric and petrochronologic data from a metasediment and mafic restite in the upper Wadi Tayin sole exposure in the Samail (Oman‐UAE) Ophiolite. Thermodynamic modeling suggests metasedimentary garnet nucleation at ~4 kb, ~550°C and final growth at 7.5 ± 1.2 kbar, 665 ± 32°C, occurring by 93.0 ± 0.5 Ma (Lu‐Hf isochron). Zircon U‐Pb dates of 106.9 ± 2.3 (detrital) and 98.7 ± 1.7 to 94.1 ± 1.6 Ma (metamorphic) bracket the initiation of metamorphism, and monazite U‐Pb dates from ~97–89 Ma suggest a lengthy period of growth or recrystallization. A mafic titanite U‐Pb age of 92.2 ± 1.8 Ma records the earliest possible juxtaposition of high‐ and lower‐grade sole rocks. These and other data suggest that (i) the Wadi Tayin sole preserves an inverted metamorphic, metasomatic, and age gradient,(ii) metasediment metamorphism occurred during, or soon after, crystallization of the overlying ophiolite (≤96.5 Ma); and (iii) sole metasediments define a thermal gradient continuous with hotter, higher‐Pamphibolites. Some of these data conflict with existing models for sole formation, and we propose several hypotheses to explain them. Cooling of the sole below Ar closure by ~92 Ma suggests that strain rapidly partitioned away from the sole, leading to large‐scale, thin‐skinned thrust emplacement of the ophiolite >100 km across the continental margin and the late, cool underthrusting of the continental margin. 
    more » « less